

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Conformational Analysis of Some 1,2-O-IsoproIpylidene- α -D-glucogfuranose Derivatives by PMR Spectroscopy¹

A. A. Akhrem^a; G. V. Zaitseva^a; A. S. Fridman^a; I. A. Mikhailopulo^a

^a Department of Bioorganic Chemistry, Institute of Physical Organic Chemistry, Minsk, USSR

To cite this Article Akhrem, A. A. , Zaitseva, G. V. , Fridman, A. S. and Mikhailopulo, I. A.(1974) 'Conformational Analysis of Some 1,2-O-IsoproIpylidene- α -D-glucogfuranose Derivatives by PMR Spectroscopy', *Spectroscopy Letters*, 7: 1, 1 — 8

To link to this Article: DOI: 10.1080/00387017408067212

URL: <http://dx.doi.org/10.1080/00387017408067212>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

CONFORMATIONAL ANALYSIS OF SOME $\text{I},2\text{-O-}i\text{SOPROPYLIDENE-}$
 $\alpha\text{-D-GLUCOFURANOSE DERIVATIVES BY PMR SPECTROSCOPY}^1$.

A.A.Akhrem, G.V.Zaitseva, A.S.Fridman and I.A.Mikhailopulo

Department of Bioorganic Chemistry, Institute of Physical
Organic Chemistry, Byelorussian SSR Academy of Sciences,
Minsk, USSR.

This paper deals with the conformational analysis of some $\text{I},2\text{-O-}i\text{SOPROPYLIDENE-}$ ~~$\alpha\text{-D-}$~~ glucofuranose derivatives², viz. $3\text{-O-toluene-p-sulphonyl-5,6-di-O-acetyl-(1)}$, $3\text{-O-toluene-p-sulphonyl-5-O-acetyl-6-chloro-6-deoxy-(2)}$, $3,5,6\text{-tri-O-acetyl-(3)}$, $3,5\text{-di-O-acetyl-6-chloro-6-deoxy-(4)}$, $3\text{-O-(N-phenyl)carbamoyl-5,6-di-O-acetyl-(5)}$, $3\text{-O-(N-phenyl)carbamoyl-5-O-acetyl-6-chloro-6-deoxy-(6)}$, $3\text{-O-(N-phenyl)carbamoyl-6-O-acetyl-(7)}$ and $6\text{-O-acetyl, 3,5-O-phenyl boronate (8)}$, that are of considerable interest from the point of view of their synthetic utilization as well as the possibility of establishing relationship between PMR parameters, conformation and reactivity of the mentioned class of compounds. Table I shows PMR parameters for compounds 1-8 which we have studied, for protons at C-6 and C-5, which were obtained by means of NMR spectrum computation program (the program was developed by one of us A.S.Fridman), and the values of corresponding dihedral and

TABLE I
Calculated Characteristics of Protons at C-5 and C-6 of I,2-O-Isopropylidene-D-Glucofuranose Derivatives

Compound	Chemical Shifts, δ ppm H-6 H-5	Coupling Constants, Hz $J_{6,6}'$ $J_{6,5}$	Dihedral Angles, θ $\theta_1(6,5)$ $\theta_2(6,5)$	Projected Angles, θ	
<u>1</u>	4.075 4.585	5.067 -12.32	2.05	55 66 121	
<u>2</u>	3.724 3.873	4.923 -12.38	2.77	62 61 123	
<u>3</u>	3.964 4.422	5.029 -12.20	5.79	52 67 119	
<u>4</u>	3.719 3.819	5.159 -12.66	4.95	2.71 55 64 119	
<u>5</u>	4.104 4.698	5.263 -11.88	5.77	2.36	52 66 118
<u>6</u>	3.720 3.850	5.254 -12.31	4.93	2.66	55 65 120
<u>7</u>	4.166 4.484	3.998 -11.70	7.10	2.35	47 66 113
<u>8</u>	4.111 4.277	4.485 -11.84	3.40	4.19	61 58 119
				$R = -CONHPh$	

projected angles. Table 2 furnishes PMR data on compounds I-8 for the protons at C-1, C-2, C-3 and C-4 found from among appropriate spectra of the first order³.

Conformation of Substituents at C₅-C₆. On the basis of the data in Table I one can see that the most populated conformation of proton H-5 with respect to protons H-6 and H'-6 (H-6 is the methylene proton at higher field; H'-6 is that at lower field; the signals of protons H-6 and H'-6 cannot be assigned individually) in compounds I-6, is the gauche-gauche conformation (Fig.I); therefore, the sum of dihedral angles θ_1 and θ_2 must be $\sim 120^\circ$; i.e. it must be equal to projected angle θ . However, the sum of dihedral angles obtained from the Karplus equation⁴ for compounds I and 2 and 3-6 noticeably differ from 120° , being 112 to 115° and 102 to 104° , respectively. An unexpected fact should be emphasized here that projected angle θ of compounds I and 2 considerably differs from that of compounds 3-6, which is most likely to be explained by an additional factor at 3-O-toluene-p-sulphonyl group that makes a material contribution to constant A of Karplus equation⁴ than by a greater population of the gauche-gauche conformation of these derivatives. We have elaborated a kind of Karplus equation (similar to the information of Slessor and Tracey⁵) that can be used for compounds I and 2 ($J = \underline{A} \cos^2\theta - 0.28$; $0^\circ \leq \theta \leq 90^\circ$; $J = \underline{B} \cos^2\theta - 0.28$; $90^\circ \leq \theta \leq 180^\circ$; $\underline{A} = 13.9$; $\underline{A} = 0.9\underline{B}$) and compounds 3-6 ($A = 16.0$). The values of θ and θ are given in Table I.

Compound 7 has been chosen as a model, wherein along with the gauche-gauche conformation of protons at C-5 and C-6 one could expect the gauche-anti conformation to be populated

owing to a fluctuating intramolecular hydrogen bond of the C_5 -OH group with the C_6 -OAc grouping (Fig.2). The IR spectrum analysis⁶ of compound 7 (its data are given in Table 3) has shown two bands at 3470 and 3350 cm^{-1} that correspond to OH combined with a hydrogen bond. Alongside with this the C=O band of the second group is shifted till 1735 cm^{-1} , which testifies to that this group participates in the origination of an intramolecular hydrogen bond. Analogous shift, to a lesser degree though, reveals the C=O band of the carbonylate group. Thus, we can assume that there exist two types of intramolecular hydrogen bond; (i) between OH and acetyl groups (OH 3350 cm^{-1}) and (ii) between OH group and 3 -O-carbamoyl (N-phenyl) group at $C-3$ (OH 3470 cm^{-1}), the former hydrogen bond can give rise to the population of both gauche-gauche and gauche-anti conformations. In fact, the value of projected angle θ , found from compound 7, noticeably differs from 120° , which testifies to a certain population of the gauche-anti conformation.

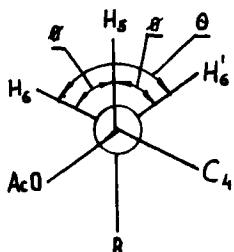


Fig.1

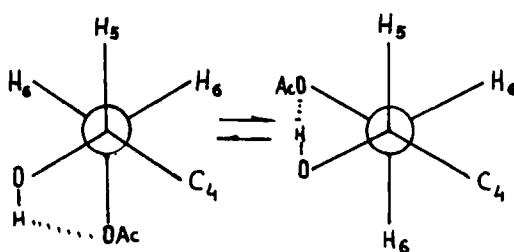


Fig.2

Compound 8 has also been chosen as a model. The value of the projected angle, found with the help of the aforementioned formulas ($A=16.0$), perfectly coincides with the presumable 120° .

6-O-acetyl group in all 5,6-di-O-acetyl derivatives exerts a non-equivalent influence (See also⁷) on the protons at C-6, the difference ratio between the values of chemical shifts, as compared with 6-chloro-6deoxy derivatives, being within the following range

$$\frac{(H-6_{OAc} - H-6_{Cl})}{(H'-6_{OAc} - H'-6_{Cl})} = 0.4I + 0.49$$

Conformation of Substituents at C₄-C₅. The data analysis of Table 2 ($J_{4,5}$) reveals that the anti conformation is the most populated conformation of protons at C-4 - C-5 for compounds I-7. Considerable variations of values $J_{4,5}$ noticed in compounds with the 3-O-(N-phenyl)carbamoyl group perfectly match the IR spectroscopy data (See Table 3): (i) the intensive δ N-H band at 3370 cm^{-1} points to a possible existence of intramolecular hydrogen bond with the acetyl group at C-5, which accords with the bend at 1740 cm^{-1} on the carbonyl groups band. It is probable that this intramolecular hydrogen bond causes changes in the side chain conformation and, as a result, decreases the coupling constant; (ii) in the case of 6-chloro-6-deoxy of compound 6, the IR spectrum shows only weak H-bonded δ N-H band though there are no obvious reasons for this phenomenon; absence of an intramolecular hydrogen bond leads to conformation H-5 - H-4 anti that in most respects is similar to compouns 2 and 4 or a change in the furanose ring conformation makes origination of the intramolecular hydrogen bond less possible to occur and results in the same effect; (iii) in the case of compound 7, the IR spectrum shows only a δ N-H band not combined with a hydrogen bond, whereas there

are two OH bands and the one at 3470 cm^{-1} may correspond to the band combined through a hydrogen bond with the oxygen functions of 3-O-(N-phenyl)carbamoyl group ($1758-1745\text{ cm}^{-1}$) which leads to an effect similar to compound 5.

Table 2

Characteristics of Protons at C-1, C-2, C-3 and C-4 of 1,2-O-Isopropylidene- α -D-Glucofuranose Derivatives³.

Compound	Chemical Shift, ppm				Coupling Constant, Hz			
	H-1	H-2	H-3	H-4	$J_{1,2}$	$J_{2,3}$	$J_{3,4}$	$J_{4,5}$
1	5.88	4.74	5.01	4.46	3.5	<0.4	2.5	9.5
2	5.78	4.64	4.98	4.50	3.6	<0.4	2.9	9.25
3	5.78	4.35	5.23	4.23	3.5	<0.4	2.5	9.5
4	5.85	4.44	5.29	4.42	3.5	<0.4	5.0	9.25
5	5.92	4.65	5.26	4.46	4.0	<0.4	2.75	8.0
6	5.89	4.66	5.24	4.50	3.5	0.75	3.0	9.75
7	5.97	4.68	5.37	4.28	4.0	<0.4	2.75	8.75
8	5.78	4.63	4.45	4.30	3.75	0.75	2.5	0.75

Table 3

IR Spectroscopy Data⁶ on Compounds 5, 6 and 7.

Compound	Adsorption Bands, cm^{-1}			Ph	Intensity Ratio
	C=O	O-H	N-H		
5	1758 (shoulder at 1740)		3450 (sharp, free) 3370 (sharp, H-bonded)	1605	$\frac{\text{NH free}}{\text{NH bond}} = \frac{1}{3}$
6	1758		3450 (sharp) 3370 (sharp)	1605	$\frac{\text{NH free}}{\text{NH bond}} = \frac{3}{1}$
7	I735(Ac) I745 (CO-NH)	3470 (broad) 3350 (broad)	3450 (sharp)	1605	$\frac{\text{OH 3470}}{\text{OH 3350}} = \frac{1}{1}$

Conformation of the Furanose Ring. Data on the coupling constants of protons at C-1, C-2, C-3 and C-4 (see Table 2) give every proof that conformations $4V \longleftrightarrow 3T_4 \longleftrightarrow 3V \longleftrightarrow 3T_2$ of the pseudorotational scheme⁸ are obviously populated for the furanose ring; they show that the furanose ring, when fused with the I,2-O-isopropylidene group, is of considerable mobility. It does not as yet seem possible, however, to make more definite conclusions where specific shares of each separate conformation are concerned. It is most likely that considerable results in the conformational analysis of carbohydrate furanose derivatives will be attained through computer analysis of PMR parameters⁹, so as to find the most populated segment of the cycle of pseudorotation for each separate compound or group of compounds conformationally alike and calculate the specific share of each conformation of this segment in the time-averaged result observed as PMR spectrum.

ACKNOWLEDGEMENTS

We express our gratitude to Mrs.L.P.Suganyak, Mr.I.I.Ugolev and Mr.T.E.Prokofyev for recording of the PMR and IR spectra.

REFERENCES

1. Preliminary results of the present work were reported at the 3rd ALL-Union Conference on Dynamyc Stereochemistry and Conformational Analysis held in Odessa, June 1973.
2. Compounds 2, 4 and 6 have been synthsized by means of the detected by us new reaction of acetylsalicyloyl chloride with diols (A.A.Akhrem, V.V.Zharkov, G.V.Zaitseva and I.A.Mikhailopulo, Tetrahedron Letters, 1975, 1475). The results (A.A.Akhrem, G.V.Zaitseva, and I.A.Mikhailopulo, Carbohydrate Res. in press) as well as the synthesis and

structure proof of the compounds 1,2,5,7 and 8 will be reported on in a separate paper.

5. PMR spectra for 15% solutions of compounds in CDCl_3 have been recorded on the Varian HA-100 Spectrometer; HMDS has been used as internal standard.
4. M.Karplus, J.Chem.Phys. 30, II (1959).
5. K.N.Slessor and A.S.Tracey, Can.J.Chem. 49, 2874 (1971).
6. IR spectra have been recorded on the UR-20 spectrophotometer (Carl Zeiss, DDR) in diluted solutions of CCl_4 and CHCl_3 free of alcohol.
7. B.Coxon, Carbohydrate Res. 8, 125 (1968).
8. L.D.Hall, P.R.Steiner and C.Pedersen, Can.J.Chem. 48, II55 (1970).
9. L.D.Hall, S.A.Black, K.N.Slessor and A.S.Tracey, Can.J.Chem. 50, 1912 (1972).

Received November 19, 1973

Accepted December 5, 1973